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The second order correction to the energy of the ground state involves a quadruple summa-
tion over molecular orbitals. We show here that the effect of the “triexcited” configurations
on a monoexcited state is cancelled by the effect of most of the “diexcited” states on the
ground state. Thus the expression for the 2nd order correlated transition energies implies
only triple summations over Molecular Orbitals. The singlet-triplet splitting is given by double
summations. Some very simple rules are given for the choice of the finally useful configurations.

Le calcul de 1’énergie de corrélation au 28 ordre pour I’état fondamental implique une
sommation guadruple portant sur les orbitales moléculaires. Nous démontrons dans cet
article que les perturbations énergétiques d’un état monoexcité par les configurations «tri-
excitées» correspondent exactement & celles apportées au fondamental par la plupart des
configurations «diexcitéesy. Ceci se traduit par un grand nombre de suppressions de termes
dans Pexpression des énergies de transition modifiées par la corrélation au 2& ordre, de sorte
qu’il ne reste plus dans une telle expression que des sommations ériples sur les orbitales molé-
culaires. De méme, la différence d’énergie singulet-triplet est donnée par des sommations
doubles. Nous donnons quelques régles trés simples concernant le choix des configurations qui
sont en fin de compte nécessaires.

Die Beitrige zweiter Ordnung des Grundzustandes ziehen eine vierfache Summation iiber
MO’s nach sich. Es wird nachgewiesen, daB der Effekt von ,,dreifach angeregten Konfigu-
rationen auf einen einfach angeregten Zustand durch gegenseitige Eliminierung aufgehoben
wird dhnlich wie die Wirkung der meisten ,,zweifach angeregten‘ Konfigurationen auf den
Grundzustand, so daB sich nur eine dreifache Summation ergibt. Die Singulett-Triplett- Auf-
spaltung ist durch eine Doppelsumme gegeben. Es werden einige sehr einfache Regeln fiir die
Wahl der schlielich bendtigten Konfigurationen angegeben.

I. Introduetion

Once one recognizes the necessity to overcome the independant particles
approximation, and if one wants to follow the classical way of Configuration Inter-
action, the main problem rapidly becomes the dimension of the complete C.I.
matrix. People generally truncate it, without good justifications, to fit it to their
computationnal abilities. A long time ago MOLLER and PLEssET [9] have proposed
to treat the correlation problem by use of perturbation theory, which seems quite
natural if one assumes that the Hartree-Fock Hamiltonian is a good approxima-
tion to the exact Hamiltonian. Although NESBET used a similar idea in 1955 for a
7 problem [10], one had to wait long time to see some systematic applications of
that very simple idea (KzrLy [6], KireNtrz [1], GRiMaLDI [5], Porak and PaLpus

[12]).
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BrUrCKNER has discussed [1] the convergence behaviour of Brillonin-Wigner
and Rayleigh-Schrédinger perturbation expansions for the correlation problem in
a gas of free electrons. The numerical results of GrmmaLpI for N, also favor the
Rayleigh-Schrédinger expansion [5]. But this expansion is not uniquely defined
as we have discussed in another paper [2]. The behaviour of the series when the
number of interacting particles tends to infinity was not clear for molecular
problems when one uses delocalized molecular orbitals. This has been analysed in
a previous paper [3] devoted to the series of linear polyenes and polyacenes.

In that paper we started to consider the large C.I. matrix as a statistical
matrix following some laws. Such on approach is well known for the analysis of
nuclear and atomic spectra [13]. Here our purpose is not to find the general shape
of spectral density, but to investigate the effect of Configuration Interaction on
some extreme states. After discussing its influence on the ground state, we try to
analyse the effect on the lower monoexcited states.

In this paper we show how the Configuration Interaction acts on the transition
energies and that the effect of most of the triexcited states on the monoexcited
states is compensated by the effect of corresponding diexcited configurations on
the ground state: the only doubly excited configurations which play a significant
role on the transition energy to a given monoexcited state are the states which
interact with it.

The formulas obtained hereafter lead to some agymptotic results for the series
of linear polyenes.

I1. Hypotheses and Methods

We start here from a single determinant wave function, assumed to be self-
consistent for the ground state. The occupied and virtual molecular orbitals are
the canonical orbitals, given by the diagonalisation of the Hamiltonian in the
chosen basis of Atomic Orbitals.

The validity of the independent particle model for the ground state is well-
known. It is largely based on Brillouin’s theorem, and illustrated by the stability
theorem [9]. This explains the good convergence of the perturbation treatment for
the ground state.

The question is more difficult, and the choice of the zeroth-order wave function
more embarrassing for the excited states. In many cases however the excited
states built with the virtual orbitals have a sufficient overlap with a true eigen-
function to give a correct idea of the transition energy and intensity, and of the
properties of the excited state.

The self-consistent Hamiltonian may be written

Hscp= 2 Hpy + C 1)
where 1
Hy = Tay + 27 275, — K, (2)
is a monoelectronic Hamiltonian and €' a constant which insures for the ground
state:
<To l Hgcor I To> = <To 1Hex [ To> . (3)

The summation 3P runs over all the molecular orbitals occupied in the ground
)
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state. In the independent particle model, the transition energy between the ground
state and an excited state | ;> should be defined as

Vi | Hser | W) — (¥ | Hsor | Woy = E3°F — EOF . 4)

And the SCF energy is the sum of monoelectronic energies: thus if the state | ¥;)>
is monoexcited and corresponds to the “‘transition” from the orbital p to the
virtual orbital ¢*

BT B = of 5,
where £ is a monoelectronic energy. (For canonical orbitals these quantities
appear as the diagonal Lagrange multipliers of Hartree’s theory, or as the eigen-
values of the SCF Hamiltonian).

One knows that this definition of the “transition energy” only gives poor
results. But very often the agreement with experiment becomes quite nice when
the transition energy is defined as the difference between the mean values of the
exact Hamiltonian for the two wave functions:

AEO—»%':@U@'|H1¥Ii>—<T0|H|To>
= (P |Hscr | P> + <Fe | V| W) — ¥y | Hser | Py — <P | V| P> -

(5)
Here V is defined by the classical partition of H,g:

V = Hey — Hscr - (6)
From Eq. (3) we may write
<T0|V[T0>=O (M
and the transition energy is given by
ABysi=(J epf — (2 ep)® + | V[ 8)
P ?

where (>)¢ is the sum over the molecular orbitals occupied in the state ¢. This is

generall§ considered as the SCF transition energies. In fact these transition
energies are already corrected to first-order by the perturbation potential V.

We shall now proceed to a Rayleigh-Schridinger expansion, using the “correla-
tion’* potential as perturbation Hamiltonian, to calculate the transition energy
corrected to the second order by correlation effects. To do this we shall calculate
both the ground state and the excited energies to the second order.

We limit ourselves here to a closed shell electronic system. The zeroth order
wave function for the ground state is

| Woy — [11...if...n7 | 9)

where » is the number of occupied orbitals (2n electrons). We call N the total
number of atomie (and thus molecular) orbitals we use.

The 224 order corrected ground state energy may be written
@]V |o)

SCF SCF *
Eo - E{

E{)Z) = JSCF | Z (10)
?

Here i represents all the excited states which may interact with ¥,. Taking into

account the Brillouin’s theorem, and the fact that V is bielectronic all the states

% are diexcited configurations.
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Let us consider now a monoexcited state ¥4+ corresponding to the transition
p —¢* between canonical M. orbitals. Its zeroth-order wave function may be
written

Wpg* =—| i1...(pg* + ¢*p). . .7 | (14)

(- for a singlet and — for a triplet state).

We first assume that our state is well separated, i.e. that the nearest states are
far enough, or interact with it weakly enough, so that we may apply a Rayleigh-
Schrodinger expansion for non-degenerate states. In other words we need for
every state ¢ the conditions

<qu* ] 14 | 'l:) (qu* l H | 'l)
= 2
Eppr — B, Eppr — B <1 (1 )

This means that the state ¥y, must keep after Configuration Interaction the
main weight in one of the eigenfunctions. This is not always the case. We introduce
this hypothesis because this greatly simplifies the demonstration of our theorems.
But we show in Appendix A, that the main results remain valid for the (near)-
degenerate case.

In the non-degenerate case, the second order corrected energy for the excited
state Wye= is given by

GV | Pogs)?
Bpp = Fpp | H | P> + ;%3_'.%03 : (13)

Here the summation over j runs a priori over the mono-, di- and tri-excited states.
We want to get:
AB@s — B2 — P
<7 IV |¥rm*>2 (’&| 14 | 0)?

ABGE ~ ABD = AR, + — . 14
B e T 2, e B ; BT B (14)

One has noticed that the transition energies involved in the denominators are the
differences between eigenvalues of the unperturbed Hamiltonian, and thus
differences between orbital energies. Doing so, we proceed to a strict Rayleigh-
Schrédinger expansion, with H® = HS5CF, We have shown elsewhere that snch a
method give poorer results than a variant, that we called Epstern-NesBET [2], in
which the denominators energies are taken as mean values of the exact Hamil-
tonian. But we do not use it, because the cancellations we demonstrate to occur
here would not appear as clearly. We demonstrate however in Appendix B that
our demonstration is not absolutely dependant of the use of orbital energies in the
denominators: a third approximation exists which combines the formal simplicity
and the accuracy.

We shall work in a basis of single determinants, not of eigenfunctions of 82:
only the ground state and the monoexcited state we are interested in are 2
eigenfunctions. It is easy to demonstrate that the first order perturbed wave func-
tion one gets so may only differ by 2nd order terms from the exact (82 eigenfunc-
tion) solution of the problem.

To demonstrate the theorem of reduction of the summations we must establish
first some lemmas which will be useful all along the paper.
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II1. Lemmas

We shall have to reduce some multiple independant summations to multiple
summations where the indices are linked by inequalities. Let us consider a function
g depending on four indices ¢k, j* I* where ¢ and & on one hand, j* and I* on the

other, run over two different sets a and 5. We suppose that it obeys the following
relations

glik, 7% 1*) = g(ki, I* j*) (15)
gk, 7* 1*) + g(ik, I* j*) = f(ik, j* I*) (16)

where f(ik, 4% I*) is invariant on any permutation of ¢ and %, j* and I*
[f(ik, 7% 1%) = f(ik, T* §*) = f(ki, 7* 1%) = f(ki, I* §¥)] . (17

Let us consider the quadraple summation:

a b b .
A=3335 glik 1.

[l

%L

It is easy to see that:

a b b
S35 Sk =233 " glik, 7* %) + glik, ¥ %)+
T k7

g* I* j<k jF<I*
a b
+ 22 > 2 glik, 7* %) +
i<k 9*
a
+2ZZ gli , 7 1*) + (18)
i PE<*
a b
+ 20 2 g (i, 7% %) -
i g%

We shall need also some relations between free summations and summations with
exceptions.
Hereafter we use the simplified notations:

al @ b/ b
2'=2 2/ =2
i GL#ED A AT

TSP 5’5 =55
k k

i< i<k <1 ?Lﬂ'
#11 #p¥
One has for instance:
) = 3 16) + f(p) (19)
and
@ b a b
22 D > f(k, gy = 37 32 2k, ) +
i<k §* I* t<k gEI*
b
+ 2 Z Z Gk, 7* ¢*) + Z > 2w, 7 ) + (20)
i<k 5* PR A

b

LSS Mt ).
y*

K2
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IV. Second Order Correlation Energy for the Ground State

We recall briefly the expression of the second order correlation energy [9]. The
“diexcited” configurations are of two types:
i

3%
a) Two “excitations” of different spins: J

These two determinants have the same matrix element with the ground state

Fi | V¥ = = [(ik | 5% %) — (i | 1* )]

where

(i | 1) = <i(1) k( N U2)>

The summation over all these conﬁgurations will give:

o b ik | IEY — (k| ¥ 5%)32
22222[(%|9 ) = (ke | B* )]

<k Fp ur et -e-a
TN . LA

b) Two “excitations” of different spins: > |7 !
klx kil*

For these configurations (¥; | H |¥> = + (ik | j* I*). This corresponds to the
summation

Sysy Y

i * T Ejx + & — & — &

This summation may be transformed according to Eq. (18), and adding the
contributions a) and b) one gets

E(z)_ézzzz(zk[;*l*zJ_(zkll* ('kil**)(@kh*l*)

i<k < Eix + Bt — & — Ex

¢ b o e s
‘}‘2222 (ik | 5% 7*)? +

i<k 3% 2e5 — &1 — &k

b (m|7* l*)2
2 L0 A
+ ; %<%6_1* + e — 2¢; +
+ & & (| *

T j* 281* — 2¢; (21)
This quadruple summation needs the calculation of 3 n(n — 1) (N — n) (N — n —1)

2p4
matrix elements. If N = Kn, and if » is large enough, this number is about Ko

Without reduction of the N* bielectronic integrals, the computation time increases
as n8. For large N the second order correlation energy appears as the best result
one may get in this way. FEven with the present abilities of computers it seems
almost impossible to reach the third order which implies the calculation of about
K8 molecular integrals.

We shall now calculate the 274 order correction to the energy of the excited
state ¥pgr. This energy BE will be decomposed into three parts Eg,z;* g EO o
E;,zq)*,l, which are respectively the correction to the energy of pg* araising from its
interaction with ‘“tri-, di- and mono-excited”’ states.

27 Theoret. chim. Acta (Berl.), Vol. 8
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Y. Second Order Correction of the Energy of a Monoexcited State,
due to the “Triexcited”’ Configurations
v o9
A | triexcited” configuration f |7* (with all possible spin functions) cannot
m | n*
interact with one of the configuration p g* or ¢* p, except if 4, k, or m = p, and
7%, I* or n* = ¢*, and if the two orbitals equal to p and ¢* have the same spin func-
tion. Thus we must examine several types of “triexcited” configurations:

pl¢* p|g*
The three “excitations’ have the same spin ; j* org | 5% . These two configura-
k|l E|I*

tions may only interact with one of the two configurations of ¥pe+. And the
matrix element is equal to

Kot ko .q® Do | H|...J% 5. . I¥kg* Py = (i | * 1¥) — (& | I* j*) .

-

Taking into account the factor 77 in ¥ye, these configurations lead to the
summation: /
Fsr ol [k | 7% 1%) — (ik | I* 7)1
A =
Z,;<% %:<% Epx + & — £y — &
. | s
The two conplementary excitations ;c \ g* in the tri-excited configuration may
be of the same spins but of a different spin than that of the transition p g*: we
g plg*
have then the configurations j | j* and ; | ;% . The matrix element
k|I* k|l*
p|g*
Py | H | 5|5* > is in general equal to:

o )
e}
*

+ [(ik | j* I¥) — (¢k | I* §%)]. But if 4 or & = p, and if j* or I* = ¢* the configura-
tion interacts with the two configurations of ¥pgx.
p|g*
Let us consider thus the configuration p | g*
7 |j*
= - 1 . . S . .
Fogr | H |- if*. T = 5 (@0 | ¢ 7%) — (01 | 7% ¢%) £ 00| 4% 7))

(| 2 [g* %) — (i 7% )
= or (22)
L -l e |
Symmetrically
Fpae | H [ 350" T = 5[0 [ 97 + (01 | 0* %) — @i % 9]
L [2mile* i = Wil %]
= or . {23)
V2 (e




Perturbation Methods. IIT 411

*

’8
T

We may write then the effect of the configurations 7
k
oLk | 7% 1) — (k| I* )P

? 7 7
ij*z Ejn - Eix — & — & +

B=

sM

£

i< <l*
,z, (Lip | 7% T%) — (ip | 1% j%)P°
T <i* &jx + E1x — & — Ep
ik *) — 3k | g* 72
LGk |7 %) - Gk g* 9

Ejx k- Egv — &1 — &k

+
sMg

!

+ l

<

g
I SN

o,

s | @0 |7 ¢%) — (p | g* 7*)7 .
> or
oL Gp [ gty
The two complementary excitations may be of different spins:
ATy p|g*
t|7* and ¢ | 7*.
AN IARA

-

==

&jx + Egn — &1 — Ep

One must notice that some of these configurations have already been considered
in the previous paragraph:

7*

7
¢*

. M
*

* and

hS TR
=

*

RS a3

The summation may be written:

? b (ik | 5* 1%)?
C=S'S'Srsy
;%;;81*'{“81*—61—&:
<, ;o (p]9* )
+ ; * 1% Ej% +81*~—6¢~—6g+
a b (ik | 7* g*)?
! I3 !
+,"Z%jz..£j*+€q*—€i—5k'
Now using the Eq. (18) and analogous relations, it is possible to transform these
summations into summations with unequalities.
Then adding 4, B, C we get the effect of the “tri-excited” states on ¥yqe.

Do Gl E U Gl | T4 = G| 750 G |00 7%)
B®,— 43753 | |

, T<F <P Ejx + &% — & — &

2 , (ik *)2 4 (ik | g* §%)? % *) (ik | g* §* i | g% ;%2

+2 zz<%’ 72 e (lejl ?i- Eq*) - si(z— lez DD + 26(::6 1—7817—) €k
a , * )2 o | T 3%V — (4p | 7% 1% (4 % g% i | A% PR

19 zZ, ;qz (p | 7* PP + (z:*l+ Zl*)_ &(zﬂpy ) Gip | B 5%) Gj*(@ilzl* ~)2s¢ "

g L e

or (Gp | g* )2 | e +ew —ci—ep

27*
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VI. Theorem of Cancellation of Quadruple Summations

It is interesting to compare BS) 5 and B, i.e. the lowering of the energies of
the monoexcited state by the “‘tri-excited” configurations and of the ground state
by the “diexcited” states. It appears clearly from Eq. (21) and (24) that many
summations are identical except that there are some restrictions in E’qu’*,?,. Thus
one must use the Eq. (20) to calculate £§) — EZ, 5. The calculation is easy, but
long and needs some care. We only give here the final result:

" Py &, (ik | 75 g% + (k| g% 7%)% — (k| 7* ¢*) (6 | ¢* 7%)
BP -~ B =23"S'> "- & Sabin
i<k J* &% A Egx — & — Ek

L2 il Z,”z, (ip | 7* P¥)? + (ip | 1% *)* — (sp | 1* %) (ip | 7* %) L

T jE<[* &% + &1+ — &1 — &p

&, L, (ip|*%)? (4 | g* %)
+ ; 7* 2e5 — €1 — & + egr + &5+ — 284

[ 3(p | 7* ¢%)? N .
+ | or

| 4(ip | * g% + B(ip | ¢* )2 — 4(ip | 7% ¢®) ip | g* %) | " TP T T
P (k] g* g%)?
+2;<k DQegr — &0 — &
P (0| 7* 42
+ 2 ;‘<l* &% + Egx —261;
S L3P V] ” sk k)2
+§, (% | g* g*) L9 (ip | 4* ¢%)
1

28(1* - 26i 28q* — & — &p

_|_
b, (pp|7* %> (pp | 7* %)
! 2
+ % 281* - 28p + Ejx + Egx — 28p +

(pp | 7* 7%)
2{;‘(1* — 28p ’

n (25)

From this equation it appears clearly that the quadruple summations cancel;
actually the summations implied in the calculation of B}, 5 are only triple and
there are only double summations in the calculation of B2« ;.

Now one may formulate the theorem:

While the calculation of the 204 order correlation energy implies a quadruple
summation (i.e. an increase in 74 of the number of matrix elements) the calculation
of the transition energy between the ground state and a monoexcited state only
implies triple summations (thus an increase in n® of the number of matrix elements
to be computed).

VIL Lowering of the Energy of the Monoexcited State
by the “Diexcited” Configurations

-
Tt is clear that, in general, a “diexcited” configuration Z t 7l* does not interact

with a given monoexcited state p | ¢*. For their matrix element to be non-zero,
it is necessary and sufficient that one of the occupied orbitals ¢, & = p or that one
of the empty orbitals j*, ¥ = ¢*. This means the useful diexcited configurations

7* | These configurations may differ by two
j* g y

. . pli*Fe
are (neglecting the spin) i |7
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orbitals, or only one orbital from the monoexcited state (we shall say that they
are di- or mono-excited with respect to it).

a) We introduce a preliminary lemma.

The matrix element between a “monoexcited” configuration and a “diexcited”
configuration which is “monoexcited” with respect to the first one, may be expres-
sed with the only use of bielectronic integrals, provided that the Molecular Orbitals
are self-consistent.

Consider <...pg*...i...| H|...pg*...ij*>. If the MO’s derive from a SCF
calculation, the Brillouin’s theorem implies:

T lH..g*...>=0.
Then one may use the trick:
Cowvp@®evin. W H |ooopg®. L oig* > = Coopg® it H |Lopgt L gE > —
~ W [ H .. .a*. ) = (ig* | * ¢%) — (ig* | ¢* %) — (ip | 7* p) + (ip | p*)  (26)
as results clearly frora the comparison of integrals implied in both matrix elements.

In the same way:

Covopg*eviw [ H | oopg. %0y = (ig* | 7 ¢*) — (ip | 7*p) . (27)

b) The two “excitations” in the “diexcited” configuration may involve the
same spin.

ions P|7* i lg* ~

Let be the configurations i ‘ I and k| (and the § spin analogous). When

they differ from ¥4+ by two orbitals, these configurations lead to the summations:

il E/b ’ [(p"’ I 7* l*) B (197‘. | > 7*)]2

T jx<I* Ejx + E1x — & — Egn
. Z,’lz, Z”, [(k | ¢* %) — (ik | * ¢ .
T <k I* Ejx + Ep — & — &

%
We must add the effect of the analogous configurations Zo l ?* which only differ by

one orbital from ¥4+. According to the preceeding lemna [34], they lead to:
&, &, Lig* | 7* ¢*) - (ig* | ¢* %) — Gp | 7* p*) + (ip | p7¥)P
22 S
T e — &
Note that the denominators correspond now to monoexcitation energies.
¢) The “diexcited’”” configuration may involve two “excitations” of different
spins.

- -
These configurations are of two types Z"?Z* or ;clqy* In the general case

(¢, k£ p, j*, I* £ ¢¥), these configurations lead to the following contributions

e, b , (2p I % [¥)2

A4 = e
,;Z % lz* Ejx + & — &7 — &g T
Ao &y Gk |g* g%
TYYE vreane
Two orbitals of the “diexcited” state may belong to the orbitals implied in the

excitation p — g*. We have four possibilities:
pij* gt pigt plj*
Bl Rz ilp il

S S {(and the inverse functions with respect to the spin)
j T
that will be treated successively.
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g%
7%

P
&) _
)Z’

o | H 2| TS = L apge [ H] oo
pq ijl* VE -

= % [(g* o | 7% 1*) = (pg* | 7% 1%)] . (28)

We get from these configurations the following sum:

B Z'bZ' g* p | * %) = (p g* | j* PP N i’ (g% p|7*7%)? 5
= AR Ejx + Ex — Ep —Egx T* (:)I‘ 28}* — Ep — Eg%
ks .
4] %7 lead, following the same process, to:
o, [k pg) + (k| pp | 4, |0 ]P0 2
0=ZZWIM) (@qu)]+z or
F<F Eqr + &p — €1 — &k T 0 egx + &p — 28
Pl . . e
) 7 15 only interacts with the configuration ¢g* p of ¥pe+. One uses the lemma

of a) and gets:

&, b gl gt ) - (pi | p P
D - ; % & — &t

Yok
Z * interacts with the two configurations of ¥ygx
q

(g¥P... 00 | H|j*B...0q% = (g% i | j* %)

pg*.. .ot |H|*p...ig*> = —(pi...ig* | H|j*p...ig*>

=— (pi|j*p). (29)

P
6);

We thus have the sum:
2, &, [g*i]7*q*) £ (pi|§* p)P
F=3> S Jay

7 g* Eje — &

Three orbitals of the diexcited states may be identical to p or ¢*. One must

. p|q*
examine two cases: 5 | _
i |g*

#
and g ;:] .. (and the inverse spin functions). In the two

cases the diexcited configuration interacts with the two configurations of ¥pgs.
q*
_,. due to the lemna (27) of a)

p
OC);q

(g*P-..u | H|g*P...iq* = (¢* ] ¢* ¢*) — (i | pg¥)
(pg*. . .06 | H | ¢* P.. .ig*) = —<pi...ig* | H|q* .. .ig%)
=—(pi|g*p). (30)
And consequently we have:
3% [g* il g* ¢%) - (pi ]| p2*) 7 (pi|g* PP’

T Eg* — €1
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¥
() In the same way for;; 5
(gD [H|g* *...>=(g*p|q*i*) — (pp | pi*) (31)
pg*. | H{g j*...> = (pg*|g*j*) (32)
0 — 2, Ug* p | g* %) — (pp | p7*) = (pg* | g* 7
- % Ejx — Ep ’
*

only interacts with the singlet state and gives

Finally the configuration ;_; 1
% ) — L] 2
g ol a - p ¢ p)
Egr — Ep

Then we may sum the different contributions 4 — H, transforming the sums

2 %m > Y. One gets:

1<k
for &, (k| g* 72 + (k| 5% ¢%)? — (k| §* q*) (ik | ¢* §*)
@ e
Eﬂq‘.2*2;<kz % g+ Ep — &~ &k +
&, < Pr (ip | 7% P2 + (ip | 1% %) — (ip | 7% 1¥) (ip | 1% %)
7 ’ 14
+2;%% Ejx + &ix — &5 — Eg* +
" z,“z, (i | p g% + (ik | ¢* p)? + 2 (ik | pg*) (ik | ¢* p) n
1< Eqx + Ep — &1 — &
L Z'bZ' (@ p | 7* 1) + (g% p |1 %)% & 2(g* p|i* %) (g% | 1* 1) L
r<is €
a b (% I 7* q*)z (ip l 7* 7*)2
’ ’
+ ; % g +&p — 284 2e5% — g5 — g4

+ 2{[(ig* | 7* ¢*) — (ip | 7* ©)® + [(ip | pj*) — (ig* | ¢* j*)]* +
+ [(ig* | 5% ¢*) — (@p | 7* D) [Gp | p7*) — Gig* | g* §%)] +
+ Bp | p7*) (ig* | ¢* i)} ——— +
& £i
" i [g* ¢ | g* ¢*) — (pi | PP + (i | *P)® F (pi | ¢* p) [(g* ¢ | ¢* ¢*) — (wi | pg™)]
[ Eqr — &1
(%1 | pg*)? 2
+{ 0 Lq*+e,,—2a¢
n i, {[(pp | 27%) ~ (g* p | ¢* 7)1+ (pg* | ¢* 7% F (pg™* | * ) [(pp | p7*) - (¢* P | ¢* %]
7% & — Ep
(g% p|7*7*)* 2 }
+{ |0 ]281*—6;—841* +

+ {2 [(pg* | ¢* q*& — (pp | ¢* p)]z} . (33)

Egx — &p

One sees immediatly in that expression that the triple summations are identical
at least for the numerators, to the triple summations remaining in B — ED, o
The denominators are now smaller. This means that most of the terms coming
from diexcited configurations in the 20d order correlation energy for the ground
state and which had not been cancelled in the transition energy by the action of
the “triexcited” configurations on the monoexcited state, correspond exactly to
the “diexcited” configurations which interact with the desired monoexcited state.
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VIII. Change in the Energy of the Monoexcited State due to the Interaction
with the Other Monoexcited States

In general, the monoexcited configurations ¢ |j* differ from Yy, by two
orbitals. On the contrary the monoexcited configurations 4 | ¢* and p | j* only
differ from p [ ¢* by one orbital. For this last case it is useful to demonstrate a
compact expression of the matrix element with p | ¢*.

Let be, for instance p | j* and 7 | 7*. It is clear that:
(pg* | H | j* P> = (pg* | 7% p) -
The other terms must be developed:
a
P H|*p>= Iy + Zk' [2(kg* | kj*) — (kq* | 7* B)] + (¢* p | 7* p)
a
= gy + %[ZUW* | kj*) — (kg* [ 7% B)] — (pg* | 27*) + (34)
+ (g% p | p7™) -
One recognizes here the expression of z54+, the non diagonal Lagrange multiplier:
42
egrye = Lo -+ %2(709* | kj*) — (kg* | 7* F) (39)

&p — &

thus:
g*D-- | H|*P...> = &gy — (pg* | pj*) + (g% p | 27*) - (36)
In the same way for i | g*
(oo P it |H | pPq® 0y = ep+ (g% 6 [q*p) — (¢* i | pg*) . (37)
With these results, it is possible to write the effect of the monoexcited configura-
tions in the following form:
B, | ~ i, i, [(.7'* P él*-%') — 2(5* p | 1g%)]? 1
’ 7 # Ut | gt i) e —&pr — 81+ &
Y P & — 2 % o £ 2
(g*i] ¢* p) — 2(g z]pq)” 1 (38)

@
+ 2 eip + { .
Z [ P le*i ] gt )
2, (pg* | p7*) + 2(pg* [ F* P)|[* __ 1
+ z [Gf*q* { [* e | er — Eqv
7 —(pg* | p7*) = e
Here g+ and g;, are zero if one uses the canonical SCF Molecular Orbitals and the
expression of the matrix element between the monoexcited states is unique.

IX. Final Expression of the Second-Order Corrected Transition Energy

We may now bring together the effects of the “tri-, di- and mono-excited”

states. Using Eq. (19—20) one gets the final expression of the 2nd order corrected

transition energy:
AECI~ AE® = AESCF

Egx + Egx — & — &k

233 5 [(i% | q* 7*)? + (ik | 7 ¢*) ~ (ik | g* 7*) (% | 7* 4*)] [ !
2 . ]

& + Ep — €1 — &k
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1

Ejx + Epx — &7 — &p

+2 i Z Tl [ X TRV A+ (ip | % )2 — (ip | % 1%) (ip | 1* )]

jE<[*

1
&% + E1x — &y — Eg*

a 2 % k)2 'k S 'k sk 2
_!_Z/Z/ (7'k|q q%) _[(" IPQ):E(@ iq )]

i<t 2eqr — & — & Eqx + Ep — & — &

b 9 ik %2 % XY L (g I %)72
S (pp | 7* P2 Ug*p|5*0%) = (¢*p]| )i
< [* gjx + £ — 28p Ej% + L — Ep — Eg%
1
|+

a
gx -+ qr — 260 Ejx + &p — 284

b
+ 3 (i | g
y*

%

1 1
| s _
+ (ip ‘ 7% 7%) {2&7* —& — & e & — 841*] +
3(ip | §* g%)2 } v
4ip | 7* ¢+ 36p | ¢ 0 — 4p | % ) (ip | ¢* )] o + e — 5= e

| g 1% 0% = tip |7 PP + [lip | 97%) — (ia* | g 91 —

Ejx —
" 0
— Lp* |7 ) = o | 7 0 G | 977) = ia* [ 7710+ | ip Lo (iq*]q*j*)} -
1 {[(i"‘p\q*i)—~2(@p|7*q }+
(7* p | g% i)
i Z (vi]g*q *)2+ 2(ip | g* ¢*)*

T 2eqr — 28 2eqx — & — &p

Ejx — Egx — & — Ep

1
&gx + &p — 264

[ {q @:14*29)—2(?*@'1 Pg¥) ”2+
(¢* i | ¢* p)

,(pph* )2 4 2w l7*g*)?®
7* 281* - 2¢&, gjx + Eqx — 2gp

2(q* kR
[[ PP | 27%) — (@* p | ¢* %) F (pg* | ¢* )12 + {O(q p|i*] )” 3

2(ii | pq*)zﬂ B

l[(q* il g*q*) — (pi | pg*) F (pi | g* )2 + {0

281*—8;;—8*

—(pg* | pj*) + 2(pg* | j* 10)”2
— Eprgr + ; 39
e~ e [7 ‘ {—(pq* | pi*) (39)
wplae*?  [20(pg* |q* ¢*) — (pp | g* P)|® 1
2&qx — 28p 0 Egx — €p

This formula looks very complex but it may be translated into very simple opera-
tionnal rules which precise what configurations must be taken into account for
the calculation of the excitation energy p — ¢*:

One must calcule the effect of all the monoexcited states on the desired mono
excited state.

The only triexcited configurations to be considered are of the following type:
plg*
57"
i |j*.
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The diexcited configurations where none of the orbitals p and ¢* are implied
in the excitations, do not play any role in the second order corrected transition
energy.

For the diexcited configurations where one of the orbital p or ¢* is involved
once and only once in the excitations, this effect on the ground state must be
divided by a factor 2 in the calculation of the transition energy.

The diexcited configurations where the orbitals p or (or and) ¢* are involved at

least twice in the excitations appear by their normal action on the ground state
and the excited state.

These rules are summarized in the Table.
One may derive an amazing conclusion from these rules. Let us consider the
series of linear polyenes. We have shown that the 21d order correlation energy

. 2(m —1)2
increases as the number n of carbon atoms in the system. This is due to the Al 1 )

terms involved in the summation:

4535 S z(ikli*l*)2+(ikll*7’*)2—(ﬂclf*l*) (& [2* %)

i<k jr<l* &% + E1x — &1 — &k

Let us make a closure approximation and write:

gv + e — 5 — e = 24K for all 4, k, %, I*.
Then one may conclude that [(ik | % I*)2 - (ik | 1% j%)2 — (ik | §* I¥) (ik | I* %))
tends to ;&‘{—Ei)—z where ¢ is the correlation energy per electron for the ground

state.

Table. Summary of the configurations needed for the calculation of the transition p ~ ¢*

Monocexcited X X all . Normal action on the excited state
Diexcited X X X ¢ |5* ¢lg* Normal action on the excited state; divide by
p I kg% 2 the action on the ground state
¥ a i g* i ]*
PIPp|7* k|5 k|g*
T X d|g* 4 ig* Normal action on the excited state; divide by
ilg* Bl* 2 the actiqn on the ground state
TEel*ip* 2| gF Normal action on both the ground and excited
plg* Bl7* B|7* states
pl* ilg
Pl k|g*
Zoply*oilg*
pig*p|7*
pl7* 1| g*
Bli*e|g*
plg*
Pl7*
Triexcited X plg* Normal action on the excited state
P|g*
¢ §*
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Then in the calculation of the transition energy the leading terms are,
23S S (ik | 7* g*)® + (ik | ¢* ) = (i | 7* ¢*) (0 | ¢* %)

_|_.
i<k * 24K
r o o (B0 [ R B+ (ip | 1% 5%)2 — (ip | 5% %) (ip | 1* %)
2 .
ti3 ZE
Thus we have 2(n — 1)2 (n — 2) terms. They finally will give:
/6E:2e(n;2).~428. (40)

We have then the following corollary: the effect of the di- and triexcited configura-
tions on the transition energy in the linear polyenes tends to a constant equal to
twice the correlation energy per electron.

(We exclude here the “monoexcited states”, the effect of which is non negli-
gible, due to their increasing proximity).

The theorem may be generalized in two directions:

it remains true for the calculation of the difference between the properties of
the excited and ground state, provided that this observable is linked to a bielec-
tronic, spin independant, operator;

in a later paper an extension will be given to the calculation of ionization
potentials and electroaffinity.

X. Singlet-Triplet Splitting
This formula shows also that the difference between the corresponding singlet
et triplet states (if they are both well separated) may be expressed only with a
double summation :
(8 — T)pgr = 2K pgr +
o,  4(ik|pg*) (ik|g*
+sfsio (i | p q*) (ik | ¢ p

i<k Eqrt + &p — & — &
b et p | 1) (g% p | 1* %)
AN
T %<lz; &% + Ex — &p — Egw +
g, 2 2(ip | p 7*) (ig* | ¢* 7%)
Y
+ ; % + Ex — &

_ (p | g%)® + 3(p | ¢* %) — 4(ip | * ¢¥) (ip | ¢* 7%)
Ejx -+ Egx ~— & — &p
L Aol p ) Ggt gt )
Ex — Ej
_ 4ip | §* g% - 4(ip | 7* ¢¥) F p 1 ¢ 0)
Ejx — Egqx — &4 + &p

L, 20| pg*)® - (pi| ¢* p) Ug* i | ¢* ¢*) — (pi | pg*)]
+ 2 — -

7 Eqr + Ep — 28i
_ Mg* i | pg*)® - 4g* i | pg*) [ew + (0% i | 7* p)] 4

& — &

i i _ 2pg* | 7* 72 - (0¥ | ¢* ) [pp [ 2*) — (@* p | ¢* )]

)‘#

+

(41)

+

281* — &p — Eg%
_ Hpg* | 7* p)® — Hpg* | 7* p) [ - & o + (pg* | 7%)]
Ej% — Egx
_ 2(pg* | g*g*) — (pp | 7* P)7]

Egx — Ep
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Conclusion
We would like to present four concluding remarks.

The first one concerns the case where the atomic and molecular orbitals belong
to different symmetry species (for instance ¢ and z orbitals in organic conjugated
compounds). Then, if we are interested in a transition between orbitals of the
same type of symmetry (let us say a s, —»n; transition), all the molecular inte-
grals necessary to calculate the transition energy (see Eq. 39) imply at least once
the orbital 74 or 7. Then to be different from zero, they must involve two o
orbitals and two 7 orbitals, or four & orbitals. Thus the calculation of the mw — 7*
transition energies only implies the knowledge of z 7z and ¢ = integrals: the ¢ ¢
integrals are not implied. That remark could help to analyse the disturbing
problem of the Pariser-Parr parametrisation of bielectronic integrals and to see
in what measure it takes into account correlation effects and in what measure
it is introduced to correct implicitly the basis of atomic orbitals.

We started from the ground state Hartree-Fock wave function. This procedure
is the most natural but not very symmetrical: one could start as well from the
excited self-consistent wave function. The most esthetic way of doing would be to
start from a zeroth order wave function which makes stationary the transition
energy. This wave function could be got from Nesbet’s operator formalism [11] or
by the use of an effective Hamiltonian [12]. It is likely that such a procedure
would symmetrise the expressions.

Although we have presented our demonstration for a molecular problem with
self-consistent zeroth-order wave functions, the cancellation is a more general
phenomenon: it occurs also for atomic and other correlation problems. And it is
not neccessary for the zeroth order orbitals to be self-consistent.

This paper has been directed towards practical applications. This is the reason
why we limited our demonstration to the second order corrections. The demonstration
of the cancellation of the quadruple summations is quite easy by itself: but we
wanted to derive the final formulas and the selection rules, and this makes the
calculations long and delicate. In a further paper we shall demonstrate that similar
cancellations of the leading summations oceurs at all the orders of the perturbation
expansion.

Appendix
A) (Near)-Degeneracy Case

One must distinguish two types of (near)-degeneracy.

a) (mear)-degeneracy between monoexcited states differing by ome orbital only.

In non symetrical compounds, this case if very frequent for the lowest excited
state. In effect, if the lowest excited state corresponds to the transition n —n -+ 1,
the nearest excited states correspond to the transition  -»n+ 2 and n — 1 —
—-n+ 1.

Let be two monoexcited states only differing by one orbital. For instance:

yfm*z%(]...q*ﬁ..|i]...pq*...]) (42)

and

s

Pptr = —= (| . .£5P...| £ |...08F. .. ]).

V2
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If the two “states” interact strongly, the eigenfunctions of the degenerate sub-
matrix are:
Dy = ¢, Ppgr + ¢y Vi (43)
Dy = — 6 Pipgr + 0, Pprr

where ¢; and ¢, are of the same order of magnitude. Then @, may be written:
1 _ _ —
(151=—V—_2[[. cey gF F )P 2 | pley @F e t¥). L] (44)

Thus it is sufficient to change the two Molecular Orbitals ¢* and ¢* according to
the transformation:
¢* =0 9" + ey t* (45)
1% = — cyq* 4 ¢, 1% .
Now the non-degenerate treatment may be applied: the two states @, and @, are
well separated, and their zeroth-order wave-function keeps the form of a single
determinant.
The conclusions are exactly the same when the two states in strong interaction
differ by the ground state occuppied orbital (¥,q+ and ¥pe«). In these cases the
quantities &;p and g+ in Egs. (38, 39 and 41) may be different from zero.

b) (near)-degeneracy between states differing by two orbitals

Let us suppose that ¥,y and Wy are near-degenerate. We may call ¥, and
¥, the eigenfunctions of the submatrix built with ¥y, and Ws:

Wy = 0, Wpg + ¢ Py (46)
Wy = — 0y Vg + 0 Pier .

Among the triexcited states many interact with ¥py+ or P, but only:

p|¢* pig* p|g*
siet s|g* i|j*  (and the correct spin permutations)
AT A

interact with ¥y, and g
Then in the quadruple sum:

2222

i<k jr<I*
Fr s Fgh i
»|g* sl g%
One may couple corresponding terms, <¥; | H | i |j*> and ¥, | H |i|j*> for
El* k|l*

instance. The denominators are the same: gi* + g+ — & — ¢z. The matrix elements
only differ by a coefficient:
p g
Py H 6| %> = (i | 7% T%) — (i | 1% j*)] (47)
k|1*

s | t*
CPLVH | 3] 5% = eyl (dk | 5% 1¥) — (ik | 1* )] .

k

I*
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Then one meets in the sum:
[k | * 1%) ~ (3k | ¥ j*)*

&% + E1x — &1 — &

[k | 7% %) — (ks | T* 79)]°

&g + Ex — By — &

g+ =

(48)

Thus the cancellation of the quadrupole summations occurs in the same way
between 3¢ > 3% S in BEP and >"e 37 >0 3" in E@k ;.
i<k <t i<k je<ts
In that case also the second order corrections are expressed with triple summa-
tions only.

B) Choice of the Transition Energies Involved in the Denominators of R.S.
Expansion

For the sake of simplicity we have considered as zeroth order Hamiltonian, the
canonical H.F. Hamiltonian:

HSCF = 3 I(i) + SIS 2746) — K@) + € (49)
i i

where % is the monoelectronic part of Hexget, /7 and K; the usual coulomb and
exchange operators. In that model the eigenvalues of the zeroth order Hamil-
tonian are the sums of the monoelectronic energies summed over the orbitals
occuppied in the different configurations.

This choice enables us to use the same transition energies for all the con-
figurations corresponding to a given spacefunction. And this condition was
necessary for our demonstration.

Most of the second order calculations were made in this scheme (7, 5, 12).
NessET [2] however had used a different approximation. He used for £, — Ey,
what is generally considered to be the true SCF transition energie: B, — B =
{o|H |0y — < | H[4). So did KrrLy [6] from more complex considerations. We
have discussed in a previous paper these two approximations [8]. We have shown
that the zeroth-order hamiltonian is then

where H = HSCF + 3G | V| iy | i | (50)

where V = H — HSCF, We proposed to call Epstein-Nesbet expansion this
variant of the Rayleigh Schrodinger expansion, first proposed by P.S. EpsTRIN
[4]. We have shown that the second-order correction is more important, and the
third order correction smaller when one uses H'?, as unperturbed Hamiltonian.
The gain may be important (about 309,), at least for 7 problems. STEINER [14]
discussed others partitions of the exact Hamiltonian.

In another paper [3] we applied the two expansions to the 7 electrons problem,
in the series of linear polyenes.

The superiority of Epstein-Nesbet partition is linked to the importance of the
first order correlation correction for the excited states: for the monoexcited states
Gij* | V | 4%y = Jys, Jigr — 2Ky is often of the same order of magnitude than the
observed transition energies. We cannot use the pure Epstein-Nesbet procedure
here, since it distinguishes between the energies of the different configurations
or 82 eigenfunctions corresponding to a given space function. But we may very
well improve our results by taking for all these configurations or S? eigenfunctions
the same transition energies, equal for instance to the transition energy of one of
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them. Doing so we only let on the diagonal of the perturbation matrix small terms
e V' |4y <<i| V]i). We used for instance as transition energies of the die-
xcited configurations ¢ | j* .

k|
=13 (B — Ezj*+E By + By — By + By — Byp)
=&+ e — g — epv + 5 [(Jij» — Kips) + (Jur — Kaps) + (61)

+ (e — Kig*) + (Jgix — Kgar)] -

This approximation is very convenient since all the transitions of p excited
states are calculated from the transition energies of the monoexcited states. We
verified that in the series of linear polyenes the difference with the result of the
Epstein-Nesbet expansion for the second order correlation energy ground state
is less than 0.02 eV.

Our demonstration is entirely valid with such a definition of the unperturbed
Hamiltonian, which combines the speed of the convergency and the formal

*
simplicity, if we add the condition Eyq— F ?‘: %q: =B, - EL|&.

Addendum. J. Crzex (private communication concerning unpublished results) has recently
demonstrated the cancellation of quadruple summations in the direct expression of the
transition energies. His demonstration is based on ToLmMaTCHEV’s unpublished theorems.
This completly different demonstration uses the formalism of the Green’s functions and Gold-
stone’s diagrams.
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