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The second order correction to the energy of the ground state involves a quadruple summa- 
tion over molecular orbitals. We show here that the effect of the "triexcited" configurations 
on a monoexcited state is cancelled by the effect of most of the "diexcited" states on the 
ground state. Thus the expression for the 2nd order correlated transition energies implies 
only triple summations over Molecular Orbitals. The singlet-triplet splitting is given by double 
summations. Some very simple rules are given for the choice of the finally useful configurations. 

Le ealcul de l'6nergie de corr61ation au 23 ordre pour l'6tat fondamental implique une 
sommation quadruple portant sur les orbitales mol6culaires. Nous d6montrons dans cet 
article que les perturbations 6nerg@tiques d'un 6tat monoexcit6 par les configurations ((tri- 
excit6es)) correspondent exactement & celles apport6es au fondamental par la plupart des 
configurations ((diexcit6es)). Ceei se traduit par un grand nombre de suppressions de termes 
dans l'expression des @nergies de transition modifi@es par la corr61ation au 23 ordre, de sorte 
qu'il ne reste plus dans une telle expression que des sommations triples sur les orbitales mol6- 
culaires. De re@me, la diff6rence d'6nergie singulet-triplet est dorm6e par des sommations 
doubles. Nous donnons quelques r&gles tr6s simples eoncernant le choix des configurations qui 
sour en fin de compte n6cessaires. 

Die Beitrage zweiter Ordnung des Grundzustandes ziehen eine vier/ache Summation fiber 
MO's nach sich. Es wird nachgewiesen, da$ der Effekt yon ,,dreifach angeregten" Konfigu- 
rationen auf einen einfach angeregten Zustand durch gegenseitige Eliminierung aufgehoben 
wird ahnlieh wie die Wirkung der meisten ,,zweifaeh angeregten" Konfigurationen auf den 
Grundzustand, so dal~ sich nur eine drei/ache Summation ergibt. Die Singulett-Triplett-Auf- 
spaltung ist durch eine Doppelsumme gegeben. Es werden einige sehr einfache Regeln ffir die 
Wahl der schlie$1ich benStigten Konfigurationen angegeben. 

I. Introduction 

Once one recognizes the  necess i ty  to  overcome the  i n d e p e n d a n t  par t ic les  
approx ima t ion ,  and  ff one wan t s  to  follow the  classical w a y  of  Configurat ion In t e r -  
act ion,  the  ma in  p rob lem r a p i d l y  becomes the  d imension  of  the  comple te  C.I. 
ma t r ix .  People  genera l ly  t r u n c a t e  i t ,  w i thou t  good just if icat ions,  to  fit  i t  to  the i r  
compu ta t i onna l  abil i t ies.  A long t ime  ago ~SLLE~ and  PL~SSET [9] have  proposed  
to  t r e a t  the  corre la t ion  p rob lem b y  use of  p e r t u r b a t i o n  theory ,  which seems qui te  
n a t u r a l  ff one assumes tha~ the  H a r t r e e - F o c k  H a m i l t o n i a n  is a good approx ima-  
t ion  to  the  exac t  Hami l ton ian .  A l though  N~SB~T used  a s imilar  idea  hi  i955 for a 
Jr p rob lem [i0],  one h a d  to  wa i t  long t ime  to see some sys t ema t i c  app l ica t ions  of  
t h a t  ve ry  s imple idea  (K~LLr  [6], KI~G~cITz [1], G~I~ALnI [5], POLAK and  P~mDCS 

[123). 
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BRUEOKNER has discussed [1] the convergence behaviour of Brillouin-Wigner 
and Rayleigh-Schr6dinger perturbation expansions for the correlation problem in 
a gas of free electrons. The numerical results of G~I~ALnI for N 2 also favor the 
l:~ayleigh-Schr6dinger expansion [5]. But  this expansion is not uniquely defined 
as we have discussed in another paper [2]. The behaviour of the series when the 
number of interacting particles tends to infinity was not clear for molecular 
problems when one uses delocalized molecular orbitals. This has been analysed in 
a previous paper [3] devoted to the series of linear polyenes and polyacenes. 

In  tha t  paper  we started to consider the large C.I. matr ix  as a statistical 
matr ix  following some laws. Such on approach is well known for the analysis of 
nuclear and atomic spectra [i3]. Here our purpose is not to find the general shape 
of spectral density, but  to investigate the effect of Configuration Interaction on 
some extreme states. After discussing its influence on the ground state, we t ry  to 
analyse the effect on the lower monoexcited states. 

In  this paper we show how the Configuration Interaction acts on the transition 
energies and tha t  the effect of most of the triexcited states on the monoexcited 
states is compensated by  the effect of corresponding diexeited configurations on 
the ground state : the only doubly excited configurations which play a significant 
role on the transition energy to a given monoexcited state are the states which 
interact with it. 

The formulas obtained hereafter lead to some asymptotic results for the series 
of linear polyenes. 

II. Hypotheses and Methods 

We star t  here from a single determinant wave function, assumed to be self- 
consistent for the ground state. The occupied and virtual molecular orbitals are 
the canonical orbitals, given by  the diagonalisation of the Hamiltonian in the 
chosen basis of Atomic Orbitals. 

The validity of the independent particle model for the ground state is well- 
known. I t  is largely based on Brillouin's theorem, and illustrated by  the stability 
theorem [9]. This explains the good convergence of the perturbation t rea tment  for 
the ground state. 

The question is more difficult, and the choice of the zeroth-order wave function 
more embarrassing for the excited states. In  many  eases however the excited 
states built with the virtual orbitals have a sufficient overlap with a true eigen- 
function to give a correct idea of the transition energy and intensity, and of the 
properties of the excited state. 

The self-consistent Hamfltonian may  be written 

Hsc r  = ~. H(o + C (1) 
i 

where 
x?o 2./o 0 H(O = T(O + z,j ~j(~) - K~(i) (2) 

is a monoelectronic Hamiltonian and C a constant which insures for the ground 
state : 

<To I Hscr IT  o> = <To ]H~ f~o>. (3) 
The summation ~o runs over all the molecular orbitals occupied in the ground 

i 
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state. In  the independent particle model, the transition energy between the ground 
state and an excited state ] Ti> should be defined as 

<T, t HsoF IT,> - <To l ~s~F IT0> = E ~  - Eo ~o~ . (~) 

And the SCF energy is the sum of monoelectronic energies : thus if  the state I Ti> 
is monoexeited and corresponds to the "transi t ion" from the orbital p to the 
virtual orbital q* 

E scr - E0 scr = s* - % 

where s is a monoelectronic energy. (For canonical orbitals these quantities 
appear  as the diagonal Lagrange multipliers of Hart ree 's  theory, or as the eigen- 
values of the SCF Hamiltonian). 

One knows tha t  this definition of the "transition energy" only gives poor 
results. But  very often the agreement with experiment becomes quite nice when 
the transition energy is defined as the difference between the mean values of the 
exact Hamiltonian for the two wave functions: 

AEo.+, = (T~ ] H ] T~> - <T0 I H I T  o) 
= <T, [ m o ,  IT,> + <T, I v ITs> - <To [ m o ~  I To> - <To [ v I To>. 

(5) 
Here V is defined by  the classical parti t ion of Hez : 

V = H e ~  - H s c F .  (6)  

From Eq. (3) we may  write 

<T01 v t T  o> = 0 (7) 

and the transition energy is given by  

3Eo+ ,  = ( Y. e #  -- ( ~  s~)~ + <i I V I i> (8) 
P 

where ( ~ ) '  is the sum over the molecular orbitals occupied in the state i. This is 
v 

generally considered as the SCF transition energies. In  fact  these transition 
energies are already corrected to first-order by  the perturbation potential V. 

We shall now proceed to a Rayleigh-SehrSdinger expansion, using the "correla- 
t ion" potential as perturbation Hamiltonian, to calculate the transition energy 
corrected to the second order by  correlation effects. To do this we shall calculate 
both the ground state and the excited energies to the second order. 

We limit ourselves here to a closed shell electronic system. The zeroth order 
wave function for the ground state is 

l To> = I l i . . . i r  (9) 

where n is the number  of occupied orbitals (2n electrons). We call N the total  
number  of atomic (and thus molecular) orbitals we use. 

The 2 na order corrected ground state energy m a y  be written 

</l Vl~ z 
E c~) = ESCr + z. ~ ~ .  (10) 

Here i represents all the excited states which may  interact  with To- Taking into 
account the Brfllouin's theorem, and the fact tha t  V is bielectronie all the states 
i are diexcited configurations. 
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Let  us consider now a monoexci ted state ~ q ,  corresponding to the transit ion 
p - ~  q* between canonical M.  orbitals. I t s  zeroth-order wave function m a y  be 
written 

l ~ q ,  = V~ [ t i . . . @ *  ~ q*~). . .n~] (it)  

( § for a singlet and -- for a triplet state). 

We first assume tha t  our state is well separated, i.e. t ha t  the  nearest  states are 
far enough, or interact  with it weakly enough, so tha t  we m a y  apply a Rayleigh- 
SchrSdinger expansion for non-degenerate states. I n  other words we need for 
every state i the conditions 

<~q+ ] V i i )  <~Y~q+ [H I i) 
- < t (12) 

This means tha t  the state Tpq* must  keep after Configuration In terac t ion  the 
main weight in one of  the eigenfunctions. This is not  always the case. We introduce 
this hypothesis  because this great ly  simplifies the demonstra t ion of  our theorems. 
Bu t  we show in Appendix A, t ha t  the main results remain valid for the (near)- 
degenerate ease. 

I n  the non-degenerate case, the second order corrected energy for the excited 
state Tvq* is given by  

Here the summat ion  over ] runs a priori over the mono-, di- and tri-excited states. 
We want  to get :  

LJE(~), = ~(2), _ E(02) ~ p ~  ~ p q  

- ~ - - v q  = AEvq+ + ~, ~ s - ~ - ~  - z~ ~scr ~scr " (14) 

One has noticed tha t  the transit ion energies involved in the denominators  are the 
differences between eigenvalues of  the unper turbed Hamfltonian,  and thus 
differences between orbital energies. Doing so, we proceed to a strict Rayleigh- 
SchrSdinger expansion, with H ~ = H scF. We have shown elsewhere tha t  such a 
method give poorer results than  a variant,  tha t  we called ErSTEr~-NESBET [2], in 
which the denominators  energies are taken as mean values of  the exact  Hamil-  
tonian. But  we do no t  use it, because the cancellations we demonstra te  to occur 
here would not  appear  as clearly. We demonstra te  however in Appendix B tha t  
our demonstra t ion is no t  absolutely dependant  of  the use of  orbital energies in the 
denominators  : a thi rd  approximat ion exists which combines the formal simplicity 
and the accuracy. 

We shall work in a basis of  single determinants,  no t  of  eigenfunetions of  S~: 
only the  ground state and the monoexeited state we are interested in are S ~ 
eigenfunctions. I t  is easy to demonstra te  t ha t  the first order per turbed wave func- 
t ion one gets so m a y  only differ by  2na order terms f rom the exact  (S ~ eigenfunc- 
tion) solution of  the problem. 

To demonstra te  the theorem of  reduction of  the summations we mus t  establish 
first some lemmas which will be useful all along the paper. 
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III. Lemmas 

We shah have to reduce some multiple independant  summations  to multiple 
summations  where the indices are linked by  inequalities. Le t  us consider a funct ion 
g depending on four indices i/c, j* 1" where i and/C on one hand, ?'* and l* on the 
other, run over two different sets a and b. We suppose tha t  it obeys the following 
relations 

g(ilc, j* 1") -~ g(ki, l* ]*) (15) 

g(i/c, j* l*) + g(i/c, l* ]*) =/(i/c, j* l*) (i6) 

where/(i/c, ~* l*) is invariant  on any  permuta t ion  of  i and/C, j* and l* 

[/(i/c, j* 1.) =/(i/c, 1. j*) = l(/ci, j* l*) = l(/ci, z* j*)]. (17) 

Let  us consider the quadruple  summat ion :  

a a b b 
X g(i/c, ]* 1.). A = E E E  

I t  is easy to see t ha t :  
a a b b 

E X 5 E g(i/c, ]* 1"1 = 
i k ]* l ~ 

2 f i e  E~ g(ik, j* 1.) + g(ik, l. j*) 
b 

+ 2 E~E E g(i/c, ]* i*) + 
i < k  i *  

+ 2 ~. 2 g(ii ,  j* l*) + 
i i ~ < l  * 

a b 

+ X E g (ii, ]* j*). 
i i "  

§ 

(is) 

One has for instance:  
a 

I(i) = E' l(i) + l(p) 
i i 

and 

a b Z a 2  ' z ' b 2  ' i* 
E E F E/(i/c, j* 1.) = l(i/c, 1"1 + 
i < / r  j* l* i < k  j * < / *  

a 

+ E'~ ' ~ E' E / 'E  , i* E' /(i/c, ]* q*) + l(ip, z*) + 
i < I r  ~* r i* < t* 

a b 

+ ~.' E" l(ip, i* q*). 

(19) 

(20) 

a a b b 

E ' = 2  E ' = E  
i l , ~ o  J~ J~,~q~ 

a b 

E'~ '= E E E?E '= 2 E.  
i < Ic i ( k i* < l* ~* <l* 

~ io C P* 

We shall need also some relations between free summations  and summations  with 
exceptions. 

Hereaf ter  we use the simplified nota t ions :  
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IV. Second Order Correlation Energy for the Ground State 

We recall briefly the expression of the second order correlation energy [9]. The 
"diexcited" configurations are of two types : 

a) Two "excitations" of different spins: i / j* ~ ~* 
b l* k 1%" 

These two determinants have the same matrix element with the ground state 

< ~ l  I v I~0> = �9 [(ik I J* ~*) - (i~ it* j*)] 
where 

(ik I J~) = </(~) k(2) ~ - - / j ( l )  l(2)>. 
r12  1 

The summation over all these configurations will give: 

2 ,~<k~ ~.~b [(i~ I i* 1.) - ( ik  I z* j,)]2 

b) Two "excitations" of different spins : k l* k 

For these configurations <~u l I H t~0> = § (ik I J* l*). This corresponds to the 
summation 

b (i~ l i* z*)2 

This summation may be transformed according to Eq. (18), and adding the 
contributions a) and b) one gets 

b (ik 1/* t*)~ + (i~ I l* i*) ~ - (ik ] t,j*) (ik I/* I*) 
E(0 ~) 4 F 

i < k  ] * < ~ *  ,S~* § , s e * -  8~ - ,~,~ 

+2Sy  (Zk!L*C)' + 
i < k  1" 2 8 1 .  --  ,~  - -  8,~ 

�9 �9 e~. + ~ .  Z 2~ i  -F 

This quadruple summation needs the calculation of{  n(n - 1) (N - n) (N -- n - 1) 
K~n,~ matrix elements. I f  N = K n ,  and if n is large enough, this number is about 

Without reduction of the N t bielectronic integrals, the computation time increases 
as n s. For large N the second order correlation energy appears as the best result 
one may get in this way. Even with the present abilities of computers it seems 
almost impossible to reach the third order which implies the calculation of about 
Kan ~ molecular integrals. 

We shall now calculate the 2 nd order correction to the energy of the excited 
state ~pq,. This energy ~.~(~) will be decomposed into three parts ~(~)*~q-,a' ~(~)'~v,~*,~' 
E(v~ )*, r which are respectively the correction to the energy of pq* araising from its 
interaction with "tri-, di- and mono-excited" states. 

27  T h e o r e t .  c h i m .  A c t a  (Be r l . ) ,  V o l .  8 
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V. Second Order Correction of the Energy of a Monoexcited State, 
due to the "Triexcited" Configurations 

i j* 
A ,,triexcited" configuration k l* (with all possible spin functions) cannot 

interact with one of the configuration p q* or q* ~, except if i, k, or m = p, and 
j*, l* or n* = q*, and if the two orbitals equal to p and q* have the same spin func- 
tion. Thus we must examine several types of "triexcited" configurations: 

The three "excitations" have the same spin i j* or ~ .~* . These two configura- 

k l* ~ Z* 

tions may only interact with one of the two configurations of T~q*. And the 
matrix element is equal to 

< i ; . . . ~k . . . q*  7 . . - [  H [ . . . j*  ; . . . l *  kq*~> = (ik [~* l*) - (ik [l* ]*). 
i 

Taking into account the factor - ~  in ~ q , ,  these configurations lead to the 

summation: 
Z,~Z, ~ , b ,  [(~k I i* Z*) - (~ If* i*)] ~ A X ~  Z ~  

i ]* in the tri-excited configuration may The two conplementary excitations k l* 

be of the same spins but of a different spin than that  of the transition p q* : we 
p q* p q* 

have then the configurations ~ j* and i ~* . The matrix element 

Z* k l* 

<Tvq, I H [ ?* > is in general equal to: 

l* 
+ [(ik [ ]* l*) -- (ik [ l* ~*)]. But ff i or k = p, and ff ]* or l* = q* the configura- 

tion interacts with the two configurations of T~q*. 

P [q* 
Let us consider thus the configuration ~ ~* 

<T~q, ]H [ . . . i ]* . . . q*  ~*> = ~ [ ( p *  ] q ' i * ) - -  (pi]]* q*) • (pi I q ' i*)]  

~ 2(pi [ q* j*) - (pi l i* q*) -I 
- V~ or ] . (22) 

L -(#li*q*) 
Symmetrically 

l 
<~w I H [ . . . i *  ; . . . q *  ~*> = ~ [ (#  I q* J*) • (pi I q* J*) - (pi i j* q*)] 

a I2(pi]q:/*)-(PilJ*q*) i (23) 
- -  , 

V-~ I_ (pi [ i*q* 
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~ q* 

We may write then the effect of the configurations ~* 

l* 

B =  y , ~  ~ 
i < k  / * < l *  el* + e ~  -- e~ -- eL 

b ~ '  Z '  [(~p l i* g*) - (r I g* i*)] ~ 

i < k  1" 1 + eq - -  8 i  - -  eL 

b i (2 (@[J*q*) - (@lq*J*)~  i + ' ~ '  o r  

The two complementary excitations may be of different spins : 

p q* ~ ~* 

i J* and ~ ]*. 
l* k l* 

One must notice that  some of these configurations have already been considered 
in the previous paragraph: 

P 
i 

The summation may be written: 

q* 
j* and 
~* p 

]*. 
q* 

27* 

c = 5 '65  ' 5 'b5  ' (~lJ* ~*)~ + 

+ , ~ , ~ ,  (~pl___~*) + 

+ Y'~Z' ~ '  (i~ I J* q*)~ 
i k j .  8J* + ~q* - -  ~i  - -  ~L 

Now using the Eq. 08) and analogous relations, it is possible to transform these 
summations into summations with unequalities. 

Then adding A, B, C we get the effect of the "tri-exeited" states on ~r/vq,. 

- (2)  = 4 Y ' ~ '  b (~ ~*i*) ~ -  i* ~,  y ,  (i~li*~*)~ + I (~kl ~*) (~l~*i*) + 
J 2 ~ q . , 3  i < k ~* < l* 81 .  + 8l*  - -  8~ - -  eL 

+ 2 Y"~Z' ~ '  (ik ] i* q*)~ + (ik I q* i*) ~ - (i~ I i* q*) (ik I q* i*) + (i~ I i* i*) ~ + 
i < k j e l~  + eq* - -  e~ - -  eL 2 8 t .  - -  8~ - -  eL 

b - -  ( i i  ] j *  l * )  2 + 2 ' ~ ' ~ '  (iplj*l*) 2+(ipll*i*) 2 (iplj*l*)(ipll*j*) +e~.+et ._28~ + 
i ~'*</* ej* + ez* -- 8~ -- 8~ 

+ Z ' Z '  (~pl + . . . . . . .  + + 
i j .  2 8 1 . -  e t - e ~  e~ + q - 2e~ 2 e ~ . - 2 e ~  

[(2(i~ ]J* q*) - (~p I q* ~*))~] ~ (2~) 
+ [or ( i p  I q*  j * )2  ] el .  + eq. - e, - e~ 



412  J . P .  MALR~EU, P .  CLAVERIE, a n d  S. D~NER: 

VI. Theorem of Cancellation of Quadruple Summations 

I t  is interesting to compare ~(~) and E(o 2), i.e. the lowering of the energies of ~ pq, 3 

the monoexcited state by the "tri-excited" configurations and of the ground state 
by  the "diexcited" states. I t  appears clearly from Eq. (21) and (24) tha t  many  
summations are identical except that  there are some restrictions in P(~) Thus ~-J pq*, 3" 

one must  use the Eq. (20) to calculate E (2) ~(2) The calculation is easy, but 0,2 - -  ~ p q * , 3 "  

long and needs some care. We only give here the final result: 

?aE l 4 ,  (i~ i ]* q*)~ + (i~ I q* ]*)~ - (i~ I ]* q*) (ik I ~* i*) E(2)  E (,,) 2 E /. § 

~: b (ip I ]* l*) 2 + (ip [l* ],)2 _ (ip I l* ]*) (ip I J* l*) + 2 § 

b (ii[ q* ],)2 
+ , E, + + i i* ~s~+ - s~ - sp eq+ + sl+ - 2e~ 

[3( p I j* 
l 

4(@ l ]* q,)2 § 3(ip { q* j,)2 _ 4(@ I J* q*) (ip I q* J*)_ ~j+ + ~+ - ~' - ~ 

+ 2 X' X ' + 

b 

+ 2 E'  E'  (pp I]* q*)~ + 
J*<l* ~i* + eq+ - 2~p 

~- ~ ,  (ii [ q* q*)Z 2 (ip ] q* q*)2 
2sq+ - 2s~ A- 2sq+-s~-e~- + 

b + ~ ,  (pp I i* i*) ~ (pp { i* q*)~ ~* ~ ; - ~  + 2 + 
~+ + ~q+ - 2 ~  

+ (pp I q* q*) (25) 

From this equation it appears dear ly  tha t  the quadruple summations cancel; 
2 actually the summations implied in the calculation of Ev~, 2 are only triple and 

there are only double summations in the calculation of W p q . ,  1. 

~ o w  one may  formulate the theorem: 
While the calculation of the 2 na order correlation energy implies a quadruple 

summation (i.e. an increase in ~a of the number  of matr ix  elements) the calculation 
of the transition energy between the ground state and a monoexcited state only 
implies triple summations (thus an increase in n 3 of the number  of matr ix  elements 
to be computed). 

VII. Lowering of the Energy of the Monoexeited State 
by the "Diexeited" Configurations 

i ]* 
I t  is clear that,  in general, a "diexcited" configuration k l* does not interact 

with a given monoexcited state p I q*" For their matr ix  element to be non-zero, 
it is necessary and sufficient tha t  one of the occupied orbitals i, k ~- p or tha t  one 
of the empty  orbitals )'*, l* = q*. This means the useful diexcited configurations 

the spin) p ]* i I q* a r e  (neglecting i l* k I J*" These configurations may  differ by  two 
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orbitals, or only one orbital from the monoexcited state (we shall say that  they 
are di- or mono-excited with respect to it). 

a) We introduce a preliminary lemma. 
The matrix element between a "monoexcited" configuration and a "diexcited" 

configuration which is "monoexcited" with respect to the first one, may be expres- 
sed with the only use of bieleetronic integrals, provided that  the Molecular Orbitals 
are self-consistent. 

Consider < . . .  p~* . . . i ~ . . .  I H t" �9 �9 Pq*" �9 �9 i j*}. I f  the MO's derive from a SCF 
calculation, the Brillouin's theorem implies: 

<~o l H l . . .  i j * . . .  > = 0 .  
Then one may use the trick: 

< - . . ~ * . . . ~ ; . . -  I H I . . . p~* . . . ~J* . . .>  = < - . . ~ * . . . i ; . . .  i H I . . . ~ * . . - q * . . >  - 
- <To l H [. . .i]-*. . . > = (iq* l j* q*) - (iq* l q* j*) - (ip l j* p) + ( ip  ] p]*)  (26) 

as results clearly from the comparison of integrals implied in both matrix elements. 
In the same way: 

<.. .p~*. . . i ;  1H I'" "Pq*" "]* ;> = (iq* I]* q*) -- (ip []* p). (27) 

b) The two "excitations" in the "diexcited" configuration may involve the 
same spin. 

p ]* i q* 
Let be the configurations i l* and k j* (and the fl spin analogous). When 

they differ from Tvq, by two orbitals, these configurations lead to the summations: 

~ '  v , % ,  [(v~ I J* z*) - (vi I ~* i*)3~ + 
i J*  < l *  8 j *  + g Z* - -  ~ - -  gq~ 

~ , ~ ,  ~ ,  [(~k ]q* i*) - (i~ l i* q*)]~ + / ,  

We must add the effect of the analogous configurations p I q* i r j ,  which only differ by 

one orbital from ~vq,. According ~o the preceeding lemna [34], they lead to : 

{ ,  ~-, [(iq* I J* q*) - (iq* I q* i*) - (iv I i* v*) + (iv I p i*)]~ 

Note that  the denominators correspond now to monoexcitation energies. 
e) The "diexcited" configuration may involve two "excitations" of different 

spins. 

These configurations are of two types P]J*i l* or ki q*],. In the general case 

(i, k # p, j*, l* # q*), these configurations lead to the following contributions 

A =  ' E ' E '  (~1 + 
i ]* l* ~J* + 8l* -- ~i --  8q* 

Two orbitals of the "diexcited" state may belong to the orbitals implied in the 
excitation p -~ q*. We have four possibilities: 

p j*  i F* P ~: P J* 
l* k ~* i q* (and the inverse functions with respect to the spin) 

that  will be treated successively. 
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_ / j *  _ a , j , ~ , .  

1 
= ~ [(q* p l j* z*) • (pq* []* t*)]. (28) 

We get from these configurations the following sum: 

B =  ~ ' ~ '  E(q*p[ l*)•  I /*)]~ + , / 

i [q* 
fl) ~ ~, lead, following the same process, to: 

C = Z'aZ ' [(ik I Pq*) ~: (ik I q* p)]2 + ~,  i pq , )2  2 

p_q* 
7) i j* only interacts with the configuration q* ~ of kgr~q*. One uses the lemma 

of a) and gets: 
D = ' ~ '  [(q* i [ q* i*_) - (211P i*)]~ 

i g* 8 t *  - -  8~ 

O) ~ interacts with the two configurations of gzq,  

(q* 3 . . . i i  I / t  l /* 3 . . . i  ~*) = (q* i I J* q*) 
<p ~ , . . . i ( [  H l ]* 3 . . . i  ~*> = - <p( . . . i~*  I H [ ]* 3 . . . i~*>  

= --  (pi  I i* P )"  (29) 
We thus have the sum: 

a b E = N.' ~ '  [(q* i [ i* q*) F_ (2 ~ I i* p)]' 
i ]* 8 t~  - -  er 

Three orbitMs of the diexcited states may be identical to p or q*. One must 

examine two cases: p q* P q* = and (and the inverse spin functions). In the two 

cases the diexeited configuration interacts with the two configurations of ~ q * .  

~) ~ due to the lemna (27) of a) 

(q* 3- . . i / - [  H ] q* 3 . - . i~* )  = (q* i [ q* q*) - -  (pi  [ pq*)  

<p~*... i ( [ g  ]q* 3. . .  i~*> = - <p/-... i~* I H [q* 3 . . - i~*> 
= --  (pi  [q* p) .  (30) 

And consequently we have: 

F = ~ '  [(q* i ] q* q*) - (pi [ pq*) 7: (pi I q* p)]2 
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fl) In  the same way for ~ 7" 

< q * ~ . . .  I H l q * f * . . . > = ( q * p l q * j * ) - ( p p ] p ] * )  (31) 

< p ~ * . . . [ H I q * f * . . . }  = (P q* ] q* ?'*) (32) 

G = ~ '  [(q* p ] q* J*) - (pp ] pJ*) • (pq* I q* ~,)]2 
j .  ~j* -- ,S,p 

Finally the configuration p q* ~, only interacts with the singlet state and gives 

H = 2 [(Pq* I q* q*) - (PP I q* P)32 

Then we may sum the different contributions A -  H, transforming the sums 
E X in E ~-one gets: 
i k i < k  

~,~ , b (ik i* q*)~ i* q* r~(~) 2 ~ '  (ik l q* i*)~ + ] - (ik ] q*) (ik ] i*) + 
.t~ ~ q , ,  2 "-~ 

+ 2 ~ ' Z ' ~  ' ( i p l b  i* l*) ~ + (ip ] l* i*) 2 - (ip] j* l*) (ip I l* i*) + 
i J* l* 8 i*  + ~t* - -  ~ t  - -  8q* 

+ ~ a  (ik ] p q*)2 + (ik I q* p)2 • 2 (ik ] pq*) (ik ] q* p) + 

+ ~,b Z ,  (q* P I i* l*) ~ + (q*P]l*i*) ~ :~ 2(q*Pli* l*) (q* pl l* i*) + 
7 . < / *  e 

b (ip[ . + + , ~ ,  (ii] i* q,)2 i* i*) 2 
i i* e~* + t~v - 2c~ -1- 2,sj~ - e~ - eq* 

+ 2 {[(iq* ] j* q*) -- (iv I J* p)]2 + [(ip I PJ*) -- (iq* t q* ],)]3 + 

+ [(iq* I J* q*) -- (ip ] j* p)] [(ip ] pj*) -- (iq* I q* ]*)] + 

+ [ ~ ( i p l p j * ) ( i q *  I q* J*)]} ~ + 
8 j*  - -  ~ i  

+ ~ ,  [(q* i ] q* q*) - (pi [ pq,)]2 + (pi f q,p)2 ~: (pi [ q* p) [(q* i I q* q*) - (pi I Pq*)] 
i Eq* - -  8~ 

eq~ + e v -  2s~ + 

-4- ~ '  [(pp I pi*) - (q* p ] q* i*)]~ + (pq* I q* i*) ~ �9 (vq* I q* J*) [(pp I pJ*) - (q* p I q* 7'*)3 

One sees immediatly in that  expression that  the triple summations are identical 
at least for the numerators, ~o the triple summations remaining in E(0 2) ~(a) 

- -  ~ i o q * ,  3" 
The denominators are now smaller. This means that  most of the terms coming 
from diexeited configurations in the 2 n4 order correlation energy for the ground 
state and which had not been cancelled in the transition energy by the action of 
the "triexcited" configurations on the monoexcited state, correspond exactly to 
the "diexcited" configurations which interact with the desired monoexcited state. 
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VIII. Change in the Energy of the M o n o e x c i t e d  S t a t e  d u e  t o  the Interaction 
with the Other Monoexcited States 

In general, the monoexcited configurations i l l *  differ from 7]pq, by two 
orbitals. On the contrary the monoexcited configurations i [ q* and p ]]* only 
differ from p I q* by one orbital. For this last ease it is useful to demonstrate a 
compact expression of the matrix element with p I q*" 

Let be, for instance p [ ]* and ~ I ]*" I t  is clear that:  

<p~* ] B [ ?  ~> = (p~* []* p).  

The other terms must be developed: 
a 

<q* ~ [H I i* P> = Iq,~, + 5 '  [2(kq* ] k:*) - (kq* I]* k)] + (q* p I:* P) 
k 

= Zq,i, + ~ [2(kq* t kj*) - (kq* [7"* k)] - (pq* {p:*) + (34) 
k 

+ (q* p f p]*). 
One recognizes here the expression of 8pq*, the non diagonal Lagrange multiplier: 

~q,j, = I~, ,  + ~ 2(~q* I l#*) - (/~q* I i* k) (3~) 
k 

thus: 
< q * P ' " l  H []* ~ . . . >  = eq.j.-- (pq* I P]*) + (q* P [ PJ*)" (36) 

In the same way for i I q* 

< . . . q * ~ . . . i ; l H I . . . p ~ . . . q * ; > = e ~ §  ) . (37) 

With these results, it is possible to write the effect of the monoexcited configura- 
tions in the following form: 

= (E(J* I q* I / 
~*'~ ~ J* [( /* p ] q* i) ~ / ~J* - ~* - ~ '  + ~" 

[ I - ( q * i ] q * p ) - - 2 ( q * i ] P q * ) } ]  ~ 1 (38) 
+ ~ '  e~ + [(q, i I q* P) ~ - ~ 

b [ I (pq*[pj*)+2(pq*, j*p)}]~ 1 
+ ~ '  e~*q* 

i* [ _ (pq*  ] p ] * )  e~. - eq, 

Here el*q* and ely are zero ff one uses the canonical SCF Molecular Orbitals and the 
expression of the matrix element between the monoexcited states is unique. 

IX. Final Expression of the Seeond-0rder Corrected Transition Energy 

We may now bring together the effects of the "tri-, di- and mono-exeited" 
states. Using Eq. (i9--20) one gets the final expression of the 2 nd order corrected 
transition energy: 

AECT ,., AE(2) = AESCF + 
a b 

+ 2 ~ '  ~ '  Y' [(i~ I q* J*)~ + (ik l J* q*)~ - (i~ 
i < k  I* 

1 

et-~ + e2, -- e~ -- ,s 
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b [ 
~ ' ~ '  ? ~* ~*)~ i* + 2 ~ '  [(~p I ~*)~ + (i~ I - (iv I ~*) (ip I ~* ~'1] ~,. + ~,. _ ~, ~, 
i , < / .  

t ]+ 
+ Z'  ~ '  2(= I q* q*)~ (i~ ~* 

F 

b i* l*) ~ i* + ~ ,  ~ ,  2(pp [ [(q* P I ~*) • (q* P 11" i*)] ~ + 

+ ' 2 ' ( i i  ] q* j*)2 1 
i i*  s l ~  + eq~ - 2 s ~  e ~  + e~  - 2 e i  + 

/3(ip I ~* q*)~ } t 
+ [4(ip l J* q*)~ + 3(@ l q* J*)~ - 4(@ ]]* q*) (ip I q* J*) e .  + e,~ - e, - e~, - 

2 ([(iq* i j* q*) - (ip t J* p)]2 + [(ip ] p]*) - (iq* ]q* j.)]2 _ 
81~ - -  ,Si 

t o } - [(iP* ]J* q*) -- ( iPlJ* P)] [(ip I P]*) -- (iq* ]q* ]*)] + 2(@ IPj*)(iq* Iq*J*) - 

1 if(J* P I q* i) -- 2(ip I J* q,)]21 

+ ~, (ii I_q* q*)~ + 2(ip[ q* q_*)_~ _ 
2~q~ - -  2 8 i  2eu~ - -  ~ - -  ep  

e~. + e~ - 2e, [(q* i f q* q*) -- (pi ] pq*) ~ (pi [q* p)]2 + (ii I pq,)2 

1 [ e ~ . + l ( q * i l q * p ) - - 2 ( q * i l p q * ) } ]  2 
~ - ~, ((q* i [ q* p) + 

~,  (pp I i* J*)' 2(pp I i* q*)~ 

l [[(pp , p j . )  _ (q. p ] q .  j . )  ~ (pq. ] q .  ~.)]~ + {:(q* p ] ]* j*)}] _ 

+(pviq*q*) ~ {:((Pq* I q * q * ) - ( P p  ]q*p)}~ a 
28q~ --  2 ~ p  eq~ - -  e2~ 

This formula looks very  complex bu t  it  may  be t ranslated into very  simple opera- 
t ionnal  rules which precise what  configurations must  be taken  into account  for 
the calculation of  the excitat ion energy p -+ q* : 

One must  calcule the effect of all the  monoexci ted states on the desired mono 
excited state. 

The only tr iexci ted configurations to be considered are of the following type  : 

p q* 

i i * .  
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The diexcited configurations where none of the orbitals p and q* are implied 
in the excitations, do not play any role in the second order corrected transition 
energy. 

For the diexcitcd configurations where one of the orbital p or q* is involved 
once and only once in the excitations, this effect on the ground state must be 
divided by a factor 2 in the calculation of the transition energy. 

The diexcited configurations where the orbitals p or (or and) q* are involved at 
least twice in the excitations appear by their normal action on the ground state 
and the excited state. 

These rules are summarized in the Table. 
One may derive an amazing conclusion from these rules. Let us consider the 

series of linear polyenes. We have shown that the 2nd order correlation energy 

as the number n of carbon atoms in the system. This is due to the n2(n:  
l )2 

increases 

terms involved in the summation: 

4 ~ ~ ~ ~ (i~ [ i* l*) 2 + (ik [ l* i*) ~ - (ik I i* ~*) (ik [z* j*) 
i<k J*<l* 81"~ + 8v~ -- 8i -- 8~ 

Let us make a closure approximation and write: 

er + el* -- et -- e~ = 2 A E  for all i, k, j*, l*. 

Then one may conclude that  [(ik I j* l*) 2 + (ik ]l* j*)~ - (ik [j* l*) (ik If* ?'*)] 
2AEe 

tends to n(-~T_ t)~ where e is the correlation energy per electron for the ground 

state. 

Table. Summary o] the configurations needed/or the calculatio~ o] the transition 19 --* q* 

l~onoexcited Z Z all Normal action on the excited state 

Diexcited Z Z Z 

Triexcited 

,[J* 
p l* 

i [j* 
~ ,  

Z Z i  ] * i  i :  
p q*~ 

i* i q* 
~ *  ~ ~* 

Z P 1 J* i lq*  

P i* i q *  

p q* 

Z X p  q* 

i ]* 

i q* 
k i* 

p l i * i  7"i ~* 

Normal action on the excited state; divide by 
2 the action on the ground state 

Normal action on the excited state; divide by 
2 the action on the ground state 

Normal action on both the ground and excited 
states 

Normal action on the excited state 
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Then in the calculation of the t ransi t ion energy the  leading t e rms  are, 

i<k i* 23E 
-4- 2 ~ '  ~ '  ~ '  (ip I i* l*) z + (ip I l* i*) 2 - (ip I i* l*) (ip ] l* j*) 

/ k*</* 2AE 

Thus  we have  2(n -- l)  2 (n - 2) terms.  They  finally will give: 

~E ~ 2~ ( n -  2) ~ 2 s .  (40) 
7b 

We have  then  the  following corollary: the effect of the  di- and t r iexci ted configura- 
t ions on the  t ransi t ion energy in the linear polyenes tends to a constant  equal to 
twice the  correlation energy per  electron. 

(We exclude here the  "monoexc i ted  s ta tes" ,  the  effect of which is non negli- 
gible, due to  their  increasing proximity) .  

The  theorem m a y  be generalized in two directions: 
i t  remains  t rue  for the  calculation of the difference between the propert ies  of  

the excited and  ground state,  provided t h a t  this observable  is l inked to a bielec- 
tronic, spin independant ,  opera tor ;  

in a la ter  paper  an extension will be given to the  calculation of ionization 
potent ials  and e]ectroaffinity. 

X.  Singlet-Triplet Splitting 

This formula  shows also t h a t  the  difference between the  corresponding singlet 
et  t r ip le t  s ta tes  (ff they  are bo th  well separated)  m a y  be expressed only with a 
double summat ion :  

( S  - -  T)pq.  : 2Kpq* ,4, 
4, a _ 4( ik[pq*)  ( ik]q* p) ,4, 

b + ~,  ~ ,  4(q* v I i* t*) (q, p i z* J*) + 

,.~' ~ '  + ~(ivl v i*) (~q* I q* i*) ,4, 

(@ I i* q*)~ + 3(ip I q* i*) ~ - ~(ip I i* q*) (iv i q* i*) 
- , 4 ,  

-~ 4(ip [ p i*) (iq* ] q* i*) (41) 

4(ip [ i* q.)2 _ 4(ip [ i* q*) (i* P I q* i) § 

~ ,  2(ii ] p q.)2 _ (pi ] q* p) [(q* i I q* q*) - (pi I Pq*)] 
,4, l 

i sq. + s ~ - 2 r  

4(q* i I pq,)2 _ 4<q. i I Pq*) [~,~ + (q* i I q* P)] 
- § 

,f.p - -  8~  

b 2(pq* ] i* i*) ~ - (Pq* I q* j*)2 [(pp I PJ*) - (q* P i q* 1")] + Y / - -  

4(pq* I i* p)2 _ 4(pq* ] i* P) [ - sr q. + (pq* ] pj*)] 

2[(pq* [ q'q*)  - (pp I q*p) ~] 
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Conclusion 
We would like to present four concluding remarks. 

The first one concerns the case where the atomic and molecular orbitals belong 
to different symmetry species (for instance ~ and ~z orbitals in organic conjugated 
compounds). Then, if we are interested in a transition between orbitals of the 
same type of symmetry (let us say a ~p -7 zq* transition), all the molecular inte- 
grals necessary to calculate the transition energy (see Eq. 39) imply at least once 
the orbital Xq or 7~*. Then to be different from zero, they must involve two 
orbitals and two ~ orbitals, or four z orbitals. Thus the calculation of the u -- n* 
transition energies only implies the knowledge of ~ z and a ~ integrals : the a 
integrals are not implied. That remark could help to analyse the disturbing 
problem of the Pariser-Parr parame~risation of bielectronie integrals and to see 
in what measure it takes into account correlation effects and in what measure 
it is introduced to correct implicitly the basis of atomic orbitals. 

We started from the ground state Hartree-Fock wave function. This procedure 
is the most natural but not very symmetrical: one could start as well from the 
excited self-consistent wave function. The most esthetic way of doing would be to 
start from a zeroth order wave function which makes stationary the transition 
energy. This wave function could be got from Nesbet's operator formalism [1t] or 
by  the use of an effective ttamiltonian [{2]. I t  is likely that  such a procedure 
would symmetrise the expressions. 

Although we have presented our demonstration for a molecular problem with 
self-consistent zeroth-order wave functions, the cancellation is a more general 
phenomenon: it occurs also for atomic and other correlation problems. And it is 
not neccessary for the zeroth order orbitals to be self-consistent. 

This paper has been directed towards practical applications. This is the reason 
why we limited our demonstration to the second order corrections. The demonstration 
of the cancellation of the quadruple summations is quite easy by itself: but we 
wanted to derive the final formulas and the selection rules, and this makes the 
calculations long and delicate. In  a further paper we shall demonstrate that  similar 
cancellations of the leading summations occurs at all the orders of the perturbation 
expansion. 

Appendix 
A) (Near)-Degeneraey Case 

One must distinguish two types of (near)-degeneracy. 
a) (near).degeneracy between monoexcited states di//ering by one orbital only. 

In  non symetricM compounds, this case if very frequent for the lowest excited 
state. In  effect, if the lowest excited state corresponds to the transition n ~ n + 1, 
the nearest excited states correspond to the transition n ~ n + 2 and n -- t -~ 
~ n + l .  

Let be two monoexeited states only differing by one orbital. For instance: 

I %q* = (I.- .q* (42) 

and 
1 

~['pt* = - ~  (1"" .t* ~ . .  "l -+ 1"" "Pt*"" .I). 
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I f  the two "states"  interact strongly, the eigenfunctions of the degenerate sub- 
matr ix  are : 

r = cl ~ q *  + c~ k~t~t * (43) 

where e 1 and e 2 are of the same order of magnitude. Then r may  be written : 
1 

qS~=-~[[ . . . ( c l  q* + c2t*) ~a...[ +_ ]...p(cl~t* + c~-[*)...]] . (44) 

Thus it is sufficient to change the two Molecular Orbitals q* and t* according to 
the transformation: 

q'* = c 1 q* + c2 t* (45) 

t ' *  = - -  c 2 q*  + c 1 t * .  

Now the non-degenerate t reatment  may  be applied: the two states r and ~b 2 are 
well separated, and their zeroth-order wave-function keeps the form of a single 
determinant. 

The conclusions are exactly the same when the two states in strong interaction 
differ by  the ground state occuppied orbital (~ tq ,  and Wpq,). In  these cases the 
quantities eiv and e~*q* in Eqs. (38, 39 and 41) may  be different from zero. 

b) (near)-degeneracy between states di//ering by two orbitals 

Let us suppose tha t  Tpq, and krtst, are near-degenerate. We may  call T1 and 
T 2 the eigenfunctions of the submatrix built with 7tvq, and Tst* : 

T1 = Cl ~[J1oq* + C2 ~[JSt* (46) 

T ~  = - c~ T~q*  + cl  Ts t*  . 

Among the triexcited states many  interact with T~q* or 7-tst,, but  only: 

p q* p q* p q* 

s I t* ~ t* i ]* (and the correct spin permutations) 

interact with Tvq* and Tst*. 
Then in the quadruple sum: 

i<k j*<l* 
#io, s Cq*, t* 

p q* s 
One may  couple corresponding terms, (T1 1 H ]i j*} and (~1  ] H  ]i 

k l* k 
instance. The denominators are the same : ej* + ez* - ei -- e~. The matrix elements 
only differ by a coefficient: 

P 

k 

8 

; T l i H [ i  
k 

q* 

i * )  = cl[(i~ I J* l*) - (i~ If* i*)] 
l* 

t* 
j*> = cd( ik  [ j* 1.) - (ik [ l* j*)] . 
l* 

t* 

j*) for 
l* 

(47) 
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Then one meets in the sum: 

[(i~ I i* ~*) - (i~ I l* i*)~] ,~c- ~ + c ~  = [(i~l j *  z*) - ( i / ,  I l* J*)]~ (48) Z/ 

Thus the cancellation of the quadrupole summations occurs in the same way 
between ~ a  ~ ~b ~ in E ~  and 5 "a ~." ~"b  ~ "  in ~(~) 

i~/s  ~*~l* i ~  ~*~l* 

In  tha t  case also the second order corrections are expressed with triple summa- 
tions only. 

B) Choice of the Transition Energies Involved in the Denominators of R.S. 
Expansion 

For  the sake of simplicity we have considered as zeroth order Hamiltonian, the 
canonical I t .F.  Hamiltonian:  

oct 

H scF = ~ h(1) 9. ~ [ ~  2Jj(i) - Ki(i)] + C (49) 

where h is the monoelectronic par t  of//exact, J j  and K I the usual coulomb and 
exchange operators. In  tha t  model the eigenvalues of the zeroth order t tamfl- 
tonian are the sums of the monoelectronic energies summed over the orbitals 
oecuppied in the different configurations. 

This choice enables us to use the same transition energies for all the con- 
figurations corresponding to a given spacefunction. And this condition was 
necessary for our demonstration. 

1V[ost of the second order calculations were made in this scheme (7, 5, 12). 
NES~V,T [2] however had used a different approximation. He used for Eo - E~, 
what is generally considered to be the true SCF transition energie: Eo - E l  = 
(o ] H  I o} - ( i  [ H  [i}. So did K~LLY [6] from more complex considerations. We 
have discussed in a previous paper  these two approximations [8]. We have shown 
tha t  the zeroth-order hamiltonian is then 

where H '~ = H scF 9- ~. ( i  ] V [ i} ] i )  ( i  I (50) 
i 

where V = H -  H scF. We proposed to call Epstein-Nesbet expansion this 
var iant  of the Rayleigh Schr6dinger expansion, first proposed by P. S. EPSTnIN 
[4]. We have shown tha t  the second-order correction is more important,  and the 
third order correction smaller when one uses H '~ as unperturbed Hamiltonian. 
The gain may  be important  (about 30%), at  least for zr problems. STs, I N ~  [14] 
discussed others partitions of the exact Hamfltonian. 

In  another paper  [3] we applied the two expansions to the ~r electrons problem, 
in the series of linear polyenes. 

The superiority of Epstein-Nesbet partition is linked to the importance of the 
first order correlation correction for the excited states : for the monoexcited states 
( i]* ] V I i]*} = Jll*, Jif* - 2Kij* is often of the same order of magnitude than the 
observed transition energies. We cannot use the pure Epstein-~qesbet procedure 
here, since it distinguishes between the energies of the different configurations 
or S ~ eigenfunctions corresponding to a given space function. But  we may  very 
well improve our results by  taking for all these configurations or S ~ eigenfunctions 
the same transition energies, equal for instance to the transition energy of one of 
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them. Doing so we only let on the diagonal of  the per turbat ion matr ix  small terms 
<i [ V' I i} < <i I V ]i>. We used for instance as transit ion energies of  the die- 
xcited configurations i ] ] * .  

k ] l *  

E o - - E i  ~* � 8 9  ~  Eo Eo k I* = Eli* + - Eta* + - -  E~j ,  § E o - Eke*) 

= ei + 8~ -- ~j* -- e~* + 1 [(Jij* -- K~j*) + (Jl~* -- Kt~*) + (5t) 

+ (J~j* - K~*) + (J~* - K~z*)] �9 

This approximat ion is ve ry  convenient since all the transitions of  p excited 
states are calculated f rom the transit ion energies of  the monoexci ted states. We 
verified tha t  in the series of  linear polyenes the difference with the result of  the 
Epstein-Nesbet  expansion for the second order correlation energy ground state 
is less than  0.02 eV. 

Our demonstra t ion is entirely valid with such a definition of  the unper turbed  
Hamil tonian,  which combines the speed of  the convergency and the formal 

i f  we add  the  condi t ion E , q . - -  E ![ i q* = Eo E ~ [ a. simplicity, 
l *  - -  l *  �9 

Addendum. J. CIZEK (private communication concerning unpublished results) has recently 
demonstrated the cancellation of quadruple summations in the direct expression of the 
transition energies. His demonstration is based on TOLMATC~rEV'S unpublished theorems. 
This completly different demonstration uses the formalism of the Green's functions and Gold- 
stone's diagrams. 
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